Math 221: LINEAR ALGEBRA

Chapter 5. Vector Space \mathbb{R}^{n}
 §5-3. Orthogonality

Le Chen ${ }^{1}$
Emory University, 2021 Spring

(last updated on $03 / 15 / 2021$)

The Dot Product

The Cauchy Inequality

Orthogonality

Orthogonality and Independence

Fourier Expansion

The Dot Product

The Cauchy Inequality

Orthogonality

Orthogonality and Independence

Fourier Expansion

Dot Product

Definitions

Let $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ and $\vec{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$ be vectors in \mathbb{R}^{n}.

1. The dot product of \vec{x} and \vec{y} is

$$
\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}}=\mathrm{x}_{1} \mathrm{y}_{1}+\mathrm{x}_{2} \mathrm{y}_{2}+\cdots \mathrm{x}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}=\overrightarrow{\mathrm{x}}^{\mathrm{T}} \overrightarrow{\mathrm{y}} .
$$

2. The length or norm of \vec{x}, denoted $\|\vec{x}\|$ is

$$
\|\overrightarrow{\mathrm{x}}\|=\sqrt{\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2} \cdots+\mathrm{x}_{n}^{2}}=\sqrt{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{x}}}=\sqrt{\overrightarrow{\mathrm{x}}^{\mathrm{T}} \overrightarrow{\mathrm{x}}} .
$$

3. $\overrightarrow{\mathrm{x}}$ is called a unit vector if $\|\overrightarrow{\mathrm{x}}\|=1$.

Theorem (Properties of length and the dot product)
Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{\mathrm{n}}$, and let $\mathrm{a} \in \mathbb{R}$. Then

1. $\vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x}$ (the dot product is commutative)
2. $\vec{x} \cdot(\vec{y}+\vec{z})=\vec{x} \cdot \vec{y}+\vec{x} \cdot \vec{z}$ (the dot product distributes over addition)
3. $(\mathrm{a} \overrightarrow{\mathrm{x}}) \cdot \overrightarrow{\mathrm{y}}=\mathrm{a}(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}})=\overrightarrow{\mathrm{x}} \cdot(\mathrm{ay})$
4. $\|\overrightarrow{\mathrm{x}}\|^{2}=\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{x}}$.
5. $\|\vec{x}\| \geq 0$ with equality if and only if $\vec{x}=\overrightarrow{0}_{n}$.
6. $||a \vec{x} \|=|a||| \vec{x}|\mid$.

Example

Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$. Then

$$
\begin{aligned}
\|\vec{x}+\vec{y}\|^{2} & =(\vec{x}+\vec{y}) \cdot(\vec{x}+\vec{y}) \\
& =\vec{x} \cdot \vec{x}+\vec{x} \cdot \vec{y}+\vec{y} \cdot \vec{x}+\vec{y} \cdot \vec{y} \\
& =\vec{x} \cdot \vec{x}+2(\vec{x} \cdot \vec{y})+\vec{y} \cdot \vec{y} \\
& =\|\vec{x}\|^{2}+2(\vec{x} \cdot \vec{y})+\|\vec{y}\|^{2} .
\end{aligned}
$$

Problem
Let $\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{k}}\right\} \in \mathbb{R}^{\mathrm{n}}$ and suppose $\mathbb{R}^{\mathrm{n}}=\operatorname{span}\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{k}}\right\}$. Furthermore, suppose that there exists a vector $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$ for which $\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}_{j}}=0$ for all j , $1 \leq \mathrm{j} \leq \mathrm{k}$. Show that $\overrightarrow{\mathrm{x}}=\overrightarrow{\mathrm{O}}_{\mathrm{n}}$.

Proof.
Write $\overrightarrow{\mathrm{x}}=\mathrm{t}_{1} \overrightarrow{\mathrm{f}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{f}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{f}}_{\mathrm{k}}$ for some $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{k}} \in \mathbb{R}$ (this is possible because $\vec{f}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{k}}$ span \mathbb{R}^{n}, is this representation unique?). Then

$$
\begin{aligned}
\|\overrightarrow{\mathrm{x}}\|^{2} & =\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{x}} \\
& =\overrightarrow{\mathrm{x}} \cdot\left(\mathrm{t}_{1} \overrightarrow{\mathrm{f}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{f}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{f}}_{\mathrm{k}}\right) \\
& =\overrightarrow{\mathrm{x}} \cdot\left(\mathrm{t}_{1} \overrightarrow{\mathrm{f}}_{1}\right)+\overrightarrow{\mathrm{x}} \cdot\left(\mathrm{t}_{2} \overrightarrow{\mathrm{f}}_{2}\right)+\cdots+\overrightarrow{\mathrm{x}} \cdot\left(\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{f}}_{\mathrm{k}}\right) \\
& =\mathrm{t}_{1}\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}\right)+\mathrm{t}_{2}\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}\right)+\cdots+\mathrm{t}_{\mathrm{k}}\left(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{k}}\right) \\
& =\mathrm{t}_{1}(0)+\mathrm{t}_{2}(0)+\cdots+\mathrm{t}_{\mathrm{k}}(0)=0 .
\end{aligned}
$$

Since $\left|\mid \vec{x}\left\|^{2}=0,\right\| \overrightarrow{\mathrm{x}} \|=0\right.$. By the previous theorem, $\|\overrightarrow{\mathrm{x}}\|=0$ if and only if $\overrightarrow{\mathrm{x}}=\overrightarrow{0}_{\mathrm{n}}$. Therefore, $\overrightarrow{\mathrm{x}}=\overrightarrow{0}_{\mathrm{n}}$.

The Dot Product

The Cauchy Inequality

Orthogonality

Orthogonality and Independence

Fourier Expansion

Cauchy-Schwartz Inequality

Theorem (Cauchy-Schwartz Inequality)
If $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, then $|\vec{x} \cdot \vec{y}| \leq||\vec{x}\|| | \vec{y}\|$ with equality if and only if $\{\vec{x}, \vec{y}\}$ is linearly dependent.

$$
\left|\frac{\vec{x}}{\|\vec{x}\|} \cdot \frac{\vec{y}}{\|\vec{y}\|}\right| \leq 1
$$

$\{\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}}\}$ is linearly dependent $\Leftrightarrow \overrightarrow{\mathrm{x}}=\mathrm{t} \overrightarrow{\mathrm{y}}, \quad$ for some $\mathrm{t} \in \mathbb{R}$.

Proof.

Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$. Then

$$
\begin{aligned}
0 \leq\|t \vec{x}+\vec{y}\|^{2} & =(t \vec{x}+\vec{y}) \cdot(t \vec{x}+\vec{y}) \\
& =t^{2} \vec{x} \cdot \vec{x}+2 t \vec{x} \cdot \vec{y}+\vec{y} \cdot \vec{y} \\
& =t^{2}\|\vec{x}\|^{2}+2 t(\vec{x} \cdot \vec{y})+\|\vec{y}\|^{2}
\end{aligned}
$$

The quadratic $\mathrm{t}^{2}\|\overrightarrow{\mathrm{x}}\|^{2}+2 \mathrm{t}(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}})+\|\overrightarrow{\mathrm{y}}\|^{2}$ in t is always nonnegative, so it does not have distinct real roots. Thus, if we use the quadratic formula to solve for t , the discriminant must be non-positive, i.e.,

$$
\Delta=(2 \overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}})^{2}-4\|\overrightarrow{\mathrm{x}}\|^{2}\|\overrightarrow{\mathrm{y}}\|^{2} \leq 0
$$

Therefore, $(2 \vec{x} \cdot \vec{y})^{2} \leq 4\|\vec{x}\|^{2}\|\vec{y}\|^{2}$. Since both sides of the inequality are nonnegative, we can take (positive) square roots of both sides:

$$
|2 \overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}}| \leq 2| | \overrightarrow{\mathrm{x}}\|\mid\| \overrightarrow{\mathrm{y}} \|
$$

Therefore, $|\vec{x} \cdot \vec{y}| \leq||\vec{x}\|| | \vec{y}\|$. What remains is to show that $| \vec{x} \cdot \vec{y}|=||\vec{x}||| | \vec{y} \|$ if and only if $\{\vec{x}, \vec{y}\}$ is linearly dependent.

Proof. (continued)
First suppose that $\{\vec{x}, \vec{y}\}$ is dependent. Then by symmetry (of \vec{x} and \vec{y}), $\overrightarrow{\mathrm{x}}=\mathrm{k} \overrightarrow{\mathrm{y}}$ for some $\mathrm{k} \in \mathbb{R}$. Hence
$|\vec{x} \cdot \vec{y}|=|(\mathrm{k} \overrightarrow{\mathrm{y}}) \cdot \overrightarrow{\mathrm{y}}|=|\mathrm{k}||\overrightarrow{\mathrm{y}} \cdot \overrightarrow{\mathrm{y}}|=|\mathrm{k}| \mid \overrightarrow{\mathrm{y}} \|^{2}, \quad$ and $\quad\|\overrightarrow{\mathrm{x}}\|\left|\left|\left|\vec{y}\|=\| \mathrm{k} \overrightarrow{\mathrm{y}}\left\|\left|\left|\overrightarrow{\mathrm{y}}\|=|\mathrm{k}| \mid \overrightarrow{\mathrm{y}}\|^{2}\right.\right.\right.\right.\right.\right.$,
so $|\vec{x} \cdot \vec{y}|=|\vec{x}|| ||\vec{y}| \mid$.
Conversely, suppose $\{\vec{x}, \vec{y}\}$ is independent; then $t \vec{x}+\vec{y} \neq \overrightarrow{0}_{n}$ for all $t \in \mathbb{R}$, so $\|t \vec{x}+\vec{y}\|^{2}>0$ for all $t \in \mathbb{R}$. Thus the quadratic

$$
t^{2}\|\overrightarrow{\mathrm{x}}\|^{2}+2 t(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}})+\|\overrightarrow{\mathrm{y}}\|^{2}>0
$$

so has no real roots. It follows that the the discriminant is negative, i.e.,

$$
(2 \vec{x} \cdot \vec{y})^{2}-4\|\vec{x}\|^{2}\|\vec{y}\|^{2}<0 .
$$

Therefore, $(2 \overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}})^{2}<4\|\overrightarrow{\mathrm{x}}\|^{2}\|\overrightarrow{\mathrm{y}}\|^{2}$; taking square roots of both sides (they are both nonnegative) and dividing by two gives us

$$
|\vec{x} \cdot \vec{y}|<\|\vec{x}\|\|\vec{y}\|,
$$

showing that equality is impossible.

Corollary (Triangle Inequality I)
If $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, then $\|\vec{x}+\vec{y}\| \leq\|\vec{x}\|+\|\vec{y}\|$.
Proof.

$$
\begin{aligned}
\|\vec{x}+\vec{y}\|^{2} & =(\vec{x}+\vec{y}) \cdot(\vec{x}+\vec{y}) \\
& =\vec{x} \cdot \vec{x}+2 \vec{x} \cdot \vec{y}+\vec{y} \cdot \vec{y} \\
& =\|\vec{x}\|^{2}+2 \vec{x} \cdot \vec{y}+\|\vec{y}\|^{2} \\
& \leq\|\vec{x}\|^{2}+2\|\vec{x}\|\|\vec{y}\|+\|\vec{y}\|^{2} \text { by the Cauchy Inequality } \\
& =(\|\vec{x}\|+\|\vec{y}\|)^{2} .
\end{aligned}
$$

Since both sides of the inequality are nonnegative, we take (positive) square roots of both sides:

$$
\|\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}}\| \leq\|\overrightarrow{\mathrm{x}}\|+\|\overrightarrow{\mathrm{y}}\| .
$$

Definition

If $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, then the distance between \vec{x} and \vec{y} is defined as

$$
\mathrm{d}(\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}})=\|\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{y}}\| .
$$

Theorem (Properties of the distance function)
Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{\mathrm{n}}$. Then

1. $\mathrm{d}(\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}}) \geq 0$.
2. $d(\vec{x}, \vec{y})=0$ if and only if $\vec{x}=\vec{y}$.
3. $d(\vec{x}, \vec{y})=d(\vec{y}, \vec{x})$.
4. $\mathrm{d}(\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{z}}) \leq \mathrm{d}(\overrightarrow{\mathrm{x}}, \overrightarrow{\mathrm{y}})+\mathrm{d}(\overrightarrow{\mathrm{y}}, \overrightarrow{\mathrm{z}})$ (Triangle Inequality II).

Proof. (Proof of the Triangle Inequality II)

$$
\begin{aligned}
\mathrm{d}(\overrightarrow{\mathrm{x}}, \vec{z})=\|\overrightarrow{\mathrm{x}}-\overrightarrow{\mathrm{z}}\| & =\|(\overrightarrow{\mathrm{x}}-\vec{y})+(\overrightarrow{\mathrm{y}}-\vec{z})\| \\
& \leq\|\vec{x}-\vec{y}\|+\|\vec{y}-\vec{z}\| \text { by Triangle Inequality I } \\
& =\mathrm{d}(\overrightarrow{\mathrm{x}}, \vec{y})+\mathrm{d}(\overrightarrow{\mathrm{y}}, \vec{z}) .
\end{aligned}
$$

The Dot Product
The Cauchy Inequality

Orthogonality

Orthogonality and Independence

Fourier Expansion

Orthogonality

Definitions

Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$. We say that two vectors \vec{x} and \vec{y} are orthogonal if $\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}}=0$.

- More generally, $\mathrm{X}=\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ is an orthogonal set if each $\overrightarrow{\mathrm{x}}_{\mathrm{i}}$ is nonzero, and every pair of distinct vectors of X is orthogonal, i.e., $\overrightarrow{\mathrm{x}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{j}}=0$ for all $\mathrm{i} \neq \mathrm{j}, 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{k}$.
- A set $\mathrm{X}=\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ is an orthonormal set if X is an orthogonal set of unit vectors, i.e., $\left\|\overrightarrow{\mathrm{x}_{\mathrm{i}}}\right\|=1$ for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{k}$.

Examples

1. The standard basis $\left\{\overrightarrow{\mathrm{e}}_{1}, \cdots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$ of \mathbb{R}^{n} is an orthonormal set (and hence an orthogonal set).
2.

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]\right\}
$$

is an orthogonal (but not orthonormal) subset of \mathbb{R}^{4}.
3. If $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}$ is an orthogonal subset of \mathbb{R}^{n} and $\mathrm{p} \neq 0$, then $\left\{\mathrm{p} \overrightarrow{\mathrm{x}}_{1}, \mathrm{p} \overrightarrow{\mathrm{x}}_{2}, \ldots, \mathrm{p} \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}$ is an orthogonal subset of \mathbb{R}^{n}.
4.

$$
\left\{\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \frac{1}{2}\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right], \frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]\right\}
$$

is an orthonormal subset of \mathbb{R}^{4}.

Definition

Normalizing an orthogonal set is the process of turning an orthogonal (but not orthonormal) set into an orthonormal set. If $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}$ is an orthogonal subset of \mathbb{R}^{n}, then

$$
\left\{\frac{1}{\left\|\overrightarrow{\mathrm{x}}_{1}\right\|} \overrightarrow{\mathrm{x}}_{1}, \frac{1}{\left\|\overrightarrow{\mathrm{x}}_{2}\right\|} \overrightarrow{\mathrm{x}}_{2}, \ldots, \frac{1}{\left\|\overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\|} \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\}
$$

is an orthonormal set.

Problem

Verify that

$$
\left\{\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{r}
5 \\
1 \\
-2
\end{array}\right]\right\}
$$

is an orthogonal set, and normalize this set.

Solution

$$
\begin{aligned}
& {\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]=0-2+2=0,} \\
& {\left[\begin{array}{r}
0 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
5 \\
1 \\
-2
\end{array}\right]=0+2-2=0,} \\
& {\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right] \cdot\left[\begin{array}{r}
5 \\
1 \\
-2
\end{array}\right]=5-1-4=0,}
\end{aligned}
$$

proving that the set is orthogonal. Normalizing gives us the orthonormal set

$$
\left\{\frac{1}{\sqrt{6}}\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right], \frac{1}{\sqrt{5}}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right], \frac{1}{\sqrt{30}}\left[\begin{array}{r}
5 \\
1 \\
-2
\end{array}\right]\right\}
$$

Theorem (Pythagoras' Theorem)

If $\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ is orthogonal, then

$$
\left\|\overrightarrow{\mathrm{x}}_{1}+\overrightarrow{\mathrm{x}}_{2}+\cdots+\overrightarrow{\mathrm{x}}_{k}\right\|^{2}=\left\|\overrightarrow{\mathrm{x}}_{1}\right\|^{2}+\left\|\overrightarrow{\mathrm{x}}_{2}\right\|^{2}+\cdots+\left\|\overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\|^{2} .
$$

Proof.
Start with

$$
\begin{aligned}
\left\|\overrightarrow{\mathrm{x}}_{1}+\overrightarrow{\mathrm{x}}_{2}+\cdots+\overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\|^{2}= & \left(\overrightarrow{\mathrm{x}}_{1}+\overrightarrow{\mathrm{x}}_{2}+\cdots+\overrightarrow{\mathrm{x}}_{\mathrm{k}}\right) \cdot\left(\overrightarrow{\mathrm{x}}_{1}+\overrightarrow{\mathrm{x}}_{2}+\cdots+\overrightarrow{\mathrm{x}}_{\mathrm{k}}\right) \\
= & \left(\overrightarrow{\mathrm{x}}_{1} \cdot \overrightarrow{\mathrm{x}}_{1}+\overrightarrow{\mathrm{x}}_{1} \cdot \overrightarrow{\mathrm{x}}_{2}+\cdots+\overrightarrow{\mathrm{x}}_{1} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right) \\
& +\left(\overrightarrow{\mathrm{x}}_{2} \cdot \overrightarrow{\mathrm{x}}_{1}+\overrightarrow{\mathrm{x}}_{2} \cdot \overrightarrow{\mathrm{x}}_{2}+\cdots+\overrightarrow{\mathrm{x}}_{2} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right) \\
& \vdots \\
& \vdots \\
& +\left(\overrightarrow{\mathrm{x}}_{\mathrm{k}} \cdot \overrightarrow{\mathrm{x}}_{1}+\overrightarrow{\mathrm{x}}_{\mathrm{k}} \cdot \overrightarrow{\mathrm{x}}_{2}+\cdots+\overrightarrow{\mathrm{x}}_{\mathrm{k}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right) \\
= & \overrightarrow{\mathrm{x}}_{1} \cdot \overrightarrow{\mathrm{x}}_{1}+\overrightarrow{\mathrm{x}}_{2} \cdot \overrightarrow{\mathrm{x}}_{2}+\cdots+\overrightarrow{\mathrm{x}}_{\mathrm{k}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{k}} \\
= & \left\|\overrightarrow{\mathrm{x}}_{1}\right\|^{2}+\left\|\overrightarrow{\mathrm{x}}_{2}\right\|^{2}+\cdots+\left\|\overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\|^{2} .
\end{aligned}
$$

The second last equality follows from the fact that the set is orthogonal, so for all i and $\mathrm{j}, \mathrm{i} \neq \mathrm{j}$ and $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{k}, \overrightarrow{\mathrm{x}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{j}}=0$. Thus, the only nonzero terms are the ones of the form $\overrightarrow{\mathrm{x}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{k}$.

The Dot Product
The Cauchy Inequality
Orthogonality

Orthogonality and Independence

Fourier Expansion

Orthogonality and Independence

Theorem

If $\mathrm{S}=\left\{\overrightarrow{\mathrm{x}}_{1}, \overrightarrow{\mathrm{x}}_{2}, \ldots, \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right\} \subseteq \mathbb{R}^{\mathrm{n}}$ is an orthogonal set, then S is independent.

Proof.

Form the linear equation: $t_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{x}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}=\overrightarrow{0}$. We need to check whether there is only trivial solution. Notice that for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{k}$,

$$
0=\left(\mathrm{t}_{1} \overrightarrow{\mathrm{x}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{x}}_{2}+\cdots+\mathrm{t}_{\mathrm{k}} \overrightarrow{\mathrm{x}}_{\mathrm{k}}\right) \cdot \overrightarrow{\mathrm{x}}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}} \overrightarrow{\mathrm{x}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}}| | \overrightarrow{\mathrm{x}}_{\mathrm{i}} \|^{2},
$$

since $\mathrm{t}_{\mathrm{j}} \overrightarrow{\mathrm{j}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{x}}_{\mathrm{i}}=0$ for all $\mathrm{j}, 1 \leq \mathrm{j} \leq \mathrm{k}$ where $\mathrm{j} \neq \mathrm{i}$. Since $\overrightarrow{\mathrm{x}}_{\mathrm{i}} \neq \overrightarrow{0}_{\mathrm{n}}$ and $\mathrm{t}_{\mathrm{i}} \mid \overrightarrow{\mathrm{x}}_{\mathrm{i}} \|^{2}=0$, it follows that $\mathrm{t}_{\mathrm{i}}=0$ for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{k}$. Therefore, S is linearly independent.

Example

Given an arbitrary vector

$$
\overrightarrow{\mathrm{x}}=\left[\begin{array}{c}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\vdots \\
a_{\mathrm{n}}
\end{array}\right] \in \mathbb{R}^{\mathrm{n}}
$$

it is trivial to express $\overrightarrow{\mathrm{x}}$ as a linear combination of the standard basis vectors of $\mathbb{R}^{\mathrm{n}},\left\{\overrightarrow{\mathrm{e}}_{1}, \overrightarrow{\mathrm{e}}_{2}, \ldots, \overrightarrow{\mathrm{e}}_{\mathrm{n}}\right\}$:

$$
\overrightarrow{\mathrm{x}}=\mathrm{a}_{1} \overrightarrow{\mathrm{e}}_{1}+\mathrm{a}_{2} \overrightarrow{\mathrm{e}}_{2}+\cdots+\mathrm{a}_{\mathrm{n}} \overrightarrow{\mathrm{e}}_{\mathrm{n}} .
$$

Problem

Given any orthogonal basis B of \mathbb{R}^{n} (so not necessarily the standard basis), and an arbitrary vector $\overrightarrow{\mathrm{x}} \in \mathbb{R}^{\mathrm{n}}$, how do we express $\overrightarrow{\mathrm{x}}$ as a linear combination of the vectors in B?

The Dot Product

The Cauchy Inequality

Orthogonality

Orthogonality and Independence

Fourier Expansion

Fourier Expansion

Theorem (Fourier Expansion)
Let $\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$ be an orthogonal basis of a subspace U of \mathbb{R}^{n}. Then for any $\overrightarrow{\mathrm{x}} \in \mathrm{U}$,

$$
\overrightarrow{\mathrm{x}}=\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}}\right) \overrightarrow{\mathrm{f}}_{2}+\cdots+\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{m}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\|^{2}}\right) \overrightarrow{\mathrm{f}}_{\mathrm{m}} .
$$

This expression is called the Fourier expansion of \vec{x}, and

$$
\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{j}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{j}}\right\|^{2}}, \quad j=1,2, \ldots, \mathrm{~m}
$$

are called the Fourier coefficients.

Example

Let $\vec{f}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 2\end{array}\right], \vec{f}_{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$, and $\vec{f}_{3}=\left[\begin{array}{r}5 \\ 1 \\ -2\end{array}\right]$, and let $\vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
We have seen that $\mathrm{B}=\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \overrightarrow{\mathrm{f}}_{3}\right\}$ is an orthogonal subset of \mathbb{R}^{3}.
It follows that B is an orthogonal basis of \mathbb{R}^{3}. (Why?)
To express \vec{x} as a linear combination of the vectors of B , apply the Fourier Expansion Theorem. Assume $\overrightarrow{\mathrm{x}}=\mathrm{t}_{1} \overrightarrow{\mathrm{f}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{f}}_{2}+\mathrm{t}_{3} \overrightarrow{\mathrm{f}}_{3}$. Then

$$
\mathrm{t}_{1}=\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{1}}{\left\|\overrightarrow{\mathrm{f}}_{1}\right\|^{2}}=\frac{2}{6}, \quad \mathrm{t}_{2}=\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{2}}{\left\|\overrightarrow{\mathrm{f}}_{2}\right\|^{2}}=\frac{3}{5}, \quad \text { and } \quad \mathrm{t}_{3}=\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{3}}{\left\|\overrightarrow{\mathrm{f}}_{3}\right\|^{2}}=\frac{4}{30} .
$$

Therefore,

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right]+\frac{3}{5}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]+\frac{2}{15}\left[\begin{array}{r}
5 \\
1 \\
-2
\end{array}\right] .
$$

Proof. (Fourier Expansion)

Let $\overrightarrow{\mathrm{x}} \in \mathrm{U}$. Since $\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$ is a basis of $\mathrm{U}, \overrightarrow{\mathrm{x}}=\mathrm{t}_{1} \overrightarrow{\mathrm{f}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{f}}_{2}+\cdots+\mathrm{t}_{\mathrm{m}} \overrightarrow{\mathrm{f}}_{\mathrm{m}}$ for some $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{m}} \in \mathbb{R}$. Notice that for any $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{m}$,

$$
\begin{aligned}
\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{i}} & =\left(\mathrm{t}_{1} \overrightarrow{\mathrm{f}}_{1}+\mathrm{t}_{2} \overrightarrow{\mathrm{f}}_{2}+\cdots+\mathrm{t}_{\mathrm{m}} \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right) \cdot \overrightarrow{\mathrm{f}}_{\mathrm{i}} \\
& =\mathrm{t}_{\mathrm{i}} \overrightarrow{\mathrm{f}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{i}} \text { since }\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\} \text { is orthogonal } \\
& =\mathrm{t}_{\mathrm{i}}| | \mathrm{f}_{\mathrm{i}} \|^{2} .
\end{aligned}
$$

Since \vec{f}_{i} is nonzero, we obtain

$$
\mathrm{t}_{\mathrm{i}}=\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{i}}}{\left\|\overrightarrow{\mathrm{f}}_{\mathrm{i}}\right\|^{2}} .
$$

The result now follows.

Remark

If $\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \ldots, \overrightarrow{\mathrm{f}}_{\mathrm{m}}\right\}$ is an orthonormal basis, then the Fourier coefficients are simply $\mathrm{t}_{\mathrm{j}}=\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{~m}$.

Problem

$$
\text { Let } \vec{f}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \vec{f}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right], \quad \vec{f}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], \quad \vec{f}_{4}=\left[\begin{array}{r}
0 \\
0 \\
1 \\
-1
\end{array}\right] .
$$

Show that $\mathrm{B}=\left\{\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \overrightarrow{\mathrm{f}}_{3}, \overrightarrow{\mathrm{f}}_{4}\right\}$ is an orthogonal basis of \mathbb{R}^{4}, and express $\overrightarrow{\mathrm{x}}=\left[\begin{array}{llll}\mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d}\end{array}\right]^{\mathrm{T}}$ as a linear combination of $\overrightarrow{\mathrm{f}}_{1}, \overrightarrow{\mathrm{f}}_{2}, \overrightarrow{\mathrm{f}}_{3}$ and $\overrightarrow{\mathrm{f}}_{4}$.

Solution
Computing $\overrightarrow{\mathrm{f}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{f}}_{\mathrm{j}}$ for $1 \leq \mathrm{i}<\mathrm{j} \leq 4$ gives us

$$
\begin{array}{lll}
\vec{f}_{1} \cdot \vec{f}_{2}=0, & \vec{f}_{1} \cdot \overrightarrow{\mathrm{f}}_{3}=0, & \overrightarrow{\mathrm{f}}_{1} \cdot \overrightarrow{\mathrm{f}}_{4}=0, \\
\overrightarrow{\mathrm{f}}_{2} \cdot \overrightarrow{\mathrm{f}}_{3}=0, & \overrightarrow{\mathrm{f}}_{2} \cdot \overrightarrow{\mathrm{f}}_{4}=0, & \overrightarrow{\mathrm{f}}_{3} \cdot \overrightarrow{\mathrm{f}}_{4}=0 .
\end{array}
$$

Hence, B is an orthogonal set. It follows that B is independent, and since $|\mathrm{B}|=4=\operatorname{dim}\left(\mathbb{R}^{4}\right)$, B also spans \mathbb{R}^{4}. Therefore, B is an orthogonal basis of \mathbb{R}^{4}. By the Fourier Expansion Theorem,

$$
\overrightarrow{\mathrm{x}}=\left(\frac{\mathrm{a}+\mathrm{b}}{2}\right) \overrightarrow{\mathrm{f}}_{1}+\left(\frac{\mathrm{a}-\mathrm{b}}{2}\right) \overrightarrow{\mathrm{f}}_{2}+\left(\frac{\mathrm{c}+\mathrm{d}}{2}\right) \overrightarrow{\mathrm{f}}_{3}+\left(\frac{\mathrm{c}-\mathrm{d}}{2}\right) \overrightarrow{\mathrm{f}}_{4} .
$$

